The Hodge Theorem:

Based on Warner's Foundations of Diffile Mfds and Taylor's PDE I.

Port I: The Cast

We'll be working within the class of compact, oriented, Riemanning manifolds of dimension n, with DM=0.

Recall that Riem. mfds carry a unique torsion free metric connection V, that induces a Laplacian on all tensor bundles, and in particular on functions fector (MJ, Via the equivalent expressions

$$Af = tr \left[\nabla(\partial f)\right] = tr \nabla^2 f = \frac{1}{g''} \partial_i \left(g''_{2j} \partial_j f\right)$$

where g = det gij in local coordinates.

There is another competitivy notion of the Laplacian — the <u>Modge Laplacian</u>. From here on we let $E^{k}(M) := \Gamma^{\infty}(M, \Lambda^{k}(T^{*}M))$ be the bundle of smooth differential k-forms over M.

$$(\omega, n) = \int_{M} \langle \omega, n \rangle dvol$$

where <-,-> is the Eucliden inner product on $\Lambda^{P}(T^{*}M)$ defined by, eg., declaring {dxⁱ/n-- Λdx^{ip} : 15i, <--- < ip = n 3 an ON base.

and this extends smoothly to *: Eh -> En-h.

Fact [Exercise : S: Ek-> Ek-1 is given by $\begin{cases} S = (-1)^{n(k+1)+1} * d * : k > 1 \\ 0 : k = 0 \end{cases}$

Def: The Modge Laplacian is defined by $\Delta = (d+s)^2 = Sd+dS$.

Fact: The connection Laplacian mentioned above agrees with the Holge Laplain on functions, but not on higher fams in general.

This is captured by the Weitzenböch Formula $\Delta^{P} - \Delta^{H} = A$, where A is a 0th order linear operator the depends on the curvature.

Def: The space of harmonic p-forms on M is the space $H^{P}(M) := \{ w \in E^{P}(M) : \Delta w = O \} = kar(\Delta : E^{P} \rightarrow E^{P})$

Port I : Properties

First of all, Let's let $E := \bigoplus_{p=0}^{n} E^{p}(M)$, and let's declare each factor to be orthogonal.

$$\frac{Prop}{\Delta is} \quad \text{self adjoint.}$$

$$\frac{Prof}{\Delta \omega, n} = \langle \delta d \omega, n \rangle + \langle d \delta \omega, n \rangle$$

$$= \langle \omega, \delta d n \rangle + \langle \omega, d \delta n \rangle = \langle \omega, \Delta n \rangle. \quad \mathbb{Z}$$

Prop:
$$\Delta w = 0$$
 iff $Sw = dw = 0$.
Proof: Sufficiency is obvious. If $\Delta w = 0$, we test the equation with w :
 $0 = \langle \Delta w, w \rangle = \langle dSw, w \rangle + \langle Sdw, w \rangle = \langle Sw, dw \rangle + \langle dw, dw \rangle$.
Con: Minnecked, fecound, $\Delta f = 0 \rightarrow f$ is unst. (Note: $\partial M = 0$)

Part III: The Most Beautiful Theorem in Mathematics Theorem: (Modge, Weyl, Kodaira-1930's)

For each OSPEN, HP(M) is finite Amensional, and there is an orthogonal decomposition

$$E^{P}(M) = \Delta(E^{P}(M)) \oplus H^{P}(M)$$

= $\delta J(E^{P}(M)) \oplus J \delta(E^{P}(M)) \oplus H^{P}(M)$
= $\delta(E^{P^{+}}(M)) \oplus J(E^{P^{-}}(M)) \oplus H^{P}(M)$

Therefore, the Poisson Equation $\Delta \omega = d$ is solvable iff d is orthogonal to HP(M).

Proof: Tasty elliptic POE theory. I'll sy something about this it I have time.

Def: The Green's operator for Δ is the map $G: E^P \rightarrow E^P$ which maps $a \in E^P$ to the unique solu of $\Delta \omega = \pi(\omega)$. Here T= EP -> (HP) 1 is the orthogonal projection of EP onto (HP) 1. Prop: (i) G is bid and self adjoint. (iii) G is compact. (iii) If [T,]=0, then [G, T]=0. [A.B]- AB · BA Port: (i) A is bid below on Ut, hence 1~1 ショーレン ひいろ ショート Moreaur, $\langle G(\omega), \eta \rangle = \langle G(\omega), \pi(\eta) \rangle = \langle G(\omega), G(\eta) \rangle = \langle A G(\omega), G(\eta) \rangle$ $= \langle \pi(\omega), G(n) \rangle = \langle \omega, G(n) \rangle$ (in) Suppose Edize EP is bold. Then EG(di) is bold, and so is $\sum \Delta G(\lambda_i)$ $|\Delta G(\lambda_i)| = |\pi(\lambda_i)| \leq |\lambda_i|.$ By a compactness theorem for A, Z (-(di)} has a Carly subsen. 2 (III) We can write $G = (\Delta / \mu L)^{-2} \circ \pi$. We chin that T(H) CH, and T(H+) CH+. Indeed if WEH, $0 = [T, \Delta](\omega) = T\Delta(\omega) - \Delta T(\omega) = -\Delta (T(\omega)) \rightarrow T(\omega) \in \mathcal{H}.$ If deHt, then EWEE st. DW=d, hence HUEM, $\langle T_{\alpha}, \theta \rangle = \langle [T, \Delta] \omega, \theta \rangle + \langle \Delta T \omega, \theta \rangle = \langle T \omega, \Delta \theta \rangle = 0$ -> TacH+. Thus, $[T,\pi](\omega) = 0$, and on H^{\perp} $[T, \Delta]_{H^{\perp}}] = 0$. Thus, on UL, [T, (A/42)"], and so allegether [T, 6-]=0 by $T \leftarrow (\omega) - \leftarrow T \leftarrow (\omega) = T \circ (\Delta |_{M^{2}})^{-1} \circ \pi (\omega) - (\Delta |_{H^{2}})^{+} \circ \pi T (\omega)$ $= (\Delta | \mu_{\lambda})^{-1} \circ \pi T (\omega) - T (\Delta | \mu_{\lambda})^{-1} \circ \pi (\omega) .$

Corally: G commutes with *, d, S, A.

Ø

Part IV : Consequences for Algebraic Topology

by $([\omega], [n?) \longrightarrow \int_{M} \omega \wedge n$. Then (-, -) is well defined, nondegenerate, and thus determines is omorphisms $H_{JR}^{n-k}(M) \approx (H_{JR}^{k}(M))^{*}$.

Now suppose that $E \omega] \in H_{dR}^{k} \setminus \{0\}$. We seek a $[n] \in H_{dR}^{n+k}$ so that $([\omega], [n]) \neq 0$. Fix any Riem structure on M, and assume LUCOG the over H^{n+k} . Then $[R, \Delta] = 0$ implies the score H^{n+k} hence there is closed, and so $E \otimes \omega] \in H_{dR}^{n+k} \setminus \{0\}$. This allows us to conclude that (-7) is hondypointe, since $(E\omega), E \otimes \omega] = \int \omega \wedge * \omega = \int (\omega)^{2} \neq 0$. Therefore, (-7) determines an isomorphism between H_{dR}^{n+k} and $(H_{dR}^{k})^{\frac{k}{2}}$. Explicitly, hence $T: H_{dR}^{n+k} \rightarrow (H_{dR}^{k})^{\frac{k}{2}}$ by $T(E\eta) = (-, [n])$. Clearly T is liner, and it is injective by non-degenency: $0 = T(E\eta) - [n_{2}] = (-, [n_{1}] - [n_{2}]) \rightarrow [n_{1}] = [n_{2}]$. We can also the a similar liner, injective map $S: H_{dR}^{k} \rightarrow (H_{dR}^{n+k})^{k}$, so we see that $d = M_{dR}^{n+k} = dm (H_{dR}^{k})^{\frac{k}{2}} = dm H_{dR}^{k} \equiv dm (H_{dR}^{n+k})^{\frac{k}{2}} = dm H_{dR}^{n-k}$.

Remark regarding singular (co) hoursday?

Theorem S: (de Rham) For M a smooth mfd,

$$(H_{dR}^{P} \simeq H_{\Delta}^{P} \simeq H_{\Delta}^{P}) \simeq (H_{p}^{*} \simeq (H_{p}^{\infty})^{*})$$

Pothy this together with Thewen 3 we get

Ð3

A Poor Steetch of the Holge Theorem:

Pat J: Solving the PDE Qco = a.

We will proceed by studying the weak for of the equation, and then prove regularity.

To motivate this, suppose that a is a smooth solu of $\Delta \omega = \alpha$. Let $M \in E^{p}(M)$, and consider

$$\langle a, n \rangle = \langle \Delta \omega, n \rangle = \langle \omega, \Delta n \rangle$$

We say that a line function $L: E^{p}(M) \rightarrow \mathbb{R}$ is a weak solution of $\Delta w = \alpha$ provded $L(\Delta M) = \langle \alpha, M \rangle$ $\forall M \in E^{p}(M)$.

Indeed, a classical sola ∞ is a meak sola, by the Riesz Representation: $L := \langle \omega, - \rangle$:

$$\mathcal{L}(\Delta n) = \langle \omega, \Delta n \rangle = \langle \Delta \omega, n \rangle = \langle a, n \rangle$$

<u>Theorem</u>?: Let $d\in E^{p}(M)$, and $L\in (E^{p})^{*}$ a weak solution of $\Delta \omega = d$. Then $\exists \omega \in E^{p}(M)$ st. $L(n) = \langle \omega, n \rangle \quad \forall n \in E^{p}(M)$. Thus, $\langle \Delta \omega, n \rangle = \langle \omega, \Delta n \rangle = \mathcal{L}(\Delta n) = \langle \alpha, n \rangle \longrightarrow \Delta \omega = \alpha$.

Thus, we seek a weak soln to Das=d, retring on the above blackboxed result to provide regularity. Actually, we'll black box one more to help along the way:

Theorem 8: Let {di}CEP(M) with Idil+12dil = C< D. The ai has a Canty subsequence.

Let's see how these results help prove the Hodge Theorem.

Finite Dimensionality of HP = Ker A:

If H^P were to-dimil, then we could find an infinite seq. of ON di, violating Theorem 8. Let then { (ω, ,..., ωn 3 be an ON basis of H^P. <u>EP(M) ≈ Δ(EP) @ HP</u>: For any de E^P, write d= β+ Z < a, with with where β ∈ H⁴. It suffices, then, to show that H⁺= Δ(EP). Step 1: A(EP) CHL

Sopose
$$\eta \in H$$
, $\omega \in E^p$. Then
 $\langle \Delta \omega, \eta \rangle = \langle \omega, \Delta \eta \rangle = \langle \omega, o \rangle = 0$

SU indeed $\Delta(E^p) \subset H^+$.

Step 2: HICA(EP)

let deft, and define l: $\Delta(E^p) \rightarrow \mathbb{R}$ by $\mathcal{L}(\Delta n) = \langle a, n \rangle$. That is, we define l to be a "proto weak solution" of $\Delta cu = d$. We need to extend l to EP to invoke Theorem 7.

First note the lis well defined. It An_= Anz, then n-nzeH, hence < d.n.-nz)=0 as deH+.

l is also bold on $\Delta(EP)$. To see this we'll need:

Lemma: A:HL -> EP is bid below: IC>0 st. lals C/Ad/.

Prof: Suppose otherise the FEdige Ht st. 101=1, 10al < h. WLOG Eahs is Carry by Theorem 8.

Define $L: E^{p} \rightarrow \mathbb{R}$ by $\mathcal{L}(\eta) = \lim \langle d_{h}, \eta \rangle$, which exists by the above. L is 6dd (with norm 1 in fact) and $\mathcal{L}(\Delta n) = \lim \langle d_{h}, \Delta \eta \rangle = \lim \langle \Delta d_{h}, \eta \rangle = 0$

This, I is a weak soln of Aw=O, and by Theorem 7 the is indeed some we EP st. I(m)= < w, m).

Then, $\langle \omega, n \rangle = l(n) = lim \langle a_n, n \rangle \Rightarrow d_n \rightarrow \omega \in H^{\perp}$ with $|\omega| = 1$, $\Delta \omega = 0 \longrightarrow 3$.

Now, let $N \in \mathbb{P}$, and compute $|\mathcal{L}(\Delta n)| = |\mathcal{L}(\Delta(\pi^{\perp}(n)))| = |\langle \alpha, \pi^{\perp}(n) \rangle| \leq |\alpha| |\pi^{\perp}(n)|$ $\leq c |d| |\Delta(\pi^{\perp}(n))| = c |\alpha| |\Delta n|$ By Haln-Banach, we can extend Q to \mathbb{E}^{P} , invoke Theorem 7, and solving on one \mathbb{E}^{P} st. $\Delta w = d$, as desired. $5 \log 3 : \Delta(\mathbb{E}^{P}) \approx Sd(\mathbb{E}^{P}) \oplus dS(\mathbb{E}^{P})$ $\langle Sd\alpha, dS\beta \rangle = \langle d\alpha, d^{2}S\beta \rangle = 0 \implies Sd(\mathbb{E}^{P}) \perp dS(\mathbb{E}^{P})$