The Hodge Theorem:
Based on Warner's Foundations of Diffethe MAts and Taylor PDE I.

Port I: The cast
Well be working within the class of compact, oriented, Riemannimen manifold of dimension n, with $\partial M=0$.

Recall that Riem. mfrs carry a unique torsion free metric convection ∇, that induces a Laplacian on ate tensor bundles, and in particular on functions $f \in C^{\infty}(M)$, via the equorant expressions

$$
\Delta f=\operatorname{tr}[\nabla(\partial f)]=\operatorname{tr} \nabla^{2} f=\frac{1}{g^{1 / 2}} \partial_{i}\left(g^{1 / 2} g^{i j} \partial_{j} \tilde{f}\right)
$$

where $g=\operatorname{Let}_{i j}$ in local coordinates.
There is another competiting notion of the Laplacion - the Hodge Laplacian.
From here on we let $E^{k}(M):=\Gamma^{\infty}\left(M, \Lambda^{k}\left(T^{*} M\right)\right.$) be the bundle of smooth differential k-farms over M.

Def: The co-differential $\delta: E^{k}(M) \rightarrow E^{k-1}(M)$ is the formal adjoint of the differential $\delta: E^{k-1}(M) \rightarrow E^{k}(M)$

$$
(d \omega, \eta)=(\omega, \delta \eta) \quad \forall \omega \in E^{h-1}(M), \eta \in E^{k}(M) .
$$

Here, $(-,-)$ is the standard inner pout on $E^{-P}(M)$, defined of y

$$
(\omega, \eta)=\int_{M}\langle\omega, \eta\rangle d v_{o l}
$$

where $\langle-,-\rangle$ is the Euclitem inner prosit on $\Lambda^{P}\left(T^{*} M\right)$ defined by, e.j., declaring $\left\{d x^{i_{1}} \cap \cdots \wedge x^{i_{p}}: 1 \leq i, c \cdots<i_{p} \leq n\right\}$ an $0 \sim$ base.
Recall also that the Hodge Star $*: \Lambda^{k} \rightarrow \Lambda^{n-k}$ is defined by, egg.

$$
\omega \wedge * \eta=\langle\omega, \eta\rangle d v o l
$$

(n) this extads smoothly to $*: E^{k} \rightarrow E^{n-n}$.

Fact 1 cerise: $\delta: E^{k} \rightarrow E^{k-1}$ is given by $\left\{\begin{array}{cl}\delta=(-1)^{n(k+1)+1} * d * & : k \geqslant 1 \\ 0 & : k=0\end{array}\right.$
Def: The Hodge Laplacian is defined by $\Delta=(d+\delta)^{2}=\delta d r d \delta$.

Fact: The convection Laplacian mentioned above agrees with the Molge Laplaim on functions, but not on higher foams in general.
This is captured by the Weitzenböch Formula $\Delta^{\nabla}-\Delta^{H}=A$, where A is a $0^{\text {th }}$ order liner openter the depends on the curvature.
Def: The spare of harmonic p-forms on M is the space

$$
H^{P}(M):=\left\{\omega \in E^{P}(M): \Delta \omega=0\right\}=\operatorname{kar}\left(\Delta: E^{P} \rightarrow E^{P}\right)
$$

Part II : Properties
First of all, let's let $E:=\bigoplus_{p=0}^{n} E^{p}(M)$, and let's declare each factor to be orthogonal.
Prop: Δ is self adjoint.

$$
\begin{aligned}
\text { Proof: } & \langle\Delta \omega, \eta\rangle
\end{aligned}=\langle\delta \delta \omega, \eta\rangle+\langle\lambda \delta \omega, \eta\rangle,
$$

Prop: $\Delta \omega=0$ if $\delta \omega=\partial \omega=0$.
Prof: sufficiency is obvious. If $\Delta \omega=0$, we test the equation with ω :

$$
0=\langle\Delta \omega, \omega\rangle=\langle\partial \delta \omega, \omega\rangle+\langle\delta \partial \omega, \omega\rangle=\langle\delta \omega, \delta \omega\rangle+\langle\partial \omega, \partial \omega\rangle .
$$

Cos: $M_{\text {connected },} f \in \cos ^{\infty}(M), \Delta f=0 \rightarrow f$ is inst. (Note: $\partial M=0$)
Part III: The Most Beartiful Theorem in Mathematics
Theorem: (Hodge, Weyl, Kodaira-1930's)
For each $0 \leq p \leq n, M^{P}(M)$ is finite dimensional, and there is an orthogonal decomposition

$$
\begin{aligned}
E^{P}(M) & =\Delta(E P(M)) \oplus H^{P}(M) \\
& =\delta d\left(E^{P}(M)\right) \oplus d \delta\left(E^{P}(M)\right) \oplus H^{P}(M) \\
& =\delta\left(E^{P+1}(M)\right) \oplus d\left(E^{P-1}(M)\right) \oplus H P(M) .
\end{aligned}
$$

Therefore, the Poisson Equation $\Delta \omega=\alpha$ is solvable iff α is orthogonal to $M P(M)$.

Prone: Tasty elliptic PDE theory. I'll sn something about this if I have time.

Def: The Green's operator for Δ is the mop $G: E^{p} \rightarrow E^{p}$ which maps $\alpha \in E P$ to the unique sols of $\Delta \omega=\pi(\alpha)$.
Here $\pi: E^{P} \rightarrow\left(H^{P}\right)^{\perp}$ is the orthogonal projection of E^{P} onto $\left(H^{P}\right)^{\perp}$.
Prop: (i) G is bod and self adjoint.
(iii) G is compact.
(iii) If $[T, \Delta]=0$, then $[G, T]=0$. $[A, B]=A B \cdot B A$

Proof: (i) Δ is bod below on U^{+}, hence

$$
|\omega| \geqslant|\pi(\omega)|=|\Delta G(\omega)| \geqslant \frac{1}{c}|G(\omega)|
$$

Morean,

$$
\begin{aligned}
\langle G(w), \eta\rangle=\langle G(w), \pi(\eta)\rangle & =\langle G(w), \Delta G(n)\rangle=\langle\Delta G(w), G(n)\rangle \\
= & \langle\pi(w), G(n)\rangle=\langle w, G(n)\rangle
\end{aligned}
$$

(ii) Suppose $\left\{\alpha_{i}\right\} \subseteq E^{P}$ is bad. Then $\left\{G\left(\alpha_{i}\right)\right\}$ is bd, ind so is $\left\{\Delta G\left(\alpha_{i}\right)\right\}:$

$$
\left|\Delta G\left(\alpha_{i}\right)\right|=\left|\pi\left(\alpha_{i}\right)\right| \leq\left|\alpha_{i}\right| .
$$

By a compactness theorem for $\Delta,\left\{G\left(\alpha_{i}\right)\right\}$ has a Cavity subjez.
(iii) We con write $G=\left(\Delta /_{H^{1}}\right)^{-1} 0 \pi$.

We claim that $T(H) C H$, and $T\left(H^{+}\right) \subset M^{+}$. Indeed if $\omega \in M$,

$$
\prime 0=[T, \Delta](\omega)=T \Delta(\omega)-\Delta T(\omega)=-\Delta(T(\omega)) \rightarrow T(\omega) \in H .
$$

If $\alpha \in H^{L}$, then $\exists \omega \in E$ st. $\Delta \omega=\alpha$, hence $\forall \theta \in M$,

$$
\begin{aligned}
& \langle T \alpha, \theta\rangle=\langle[T, \Delta] \omega, \theta\rangle+\langle\Delta T \omega, \theta\rangle=\langle T \omega, \Delta \theta\rangle=0 \\
& \rightarrow T_{a \in M^{+}} .
\end{aligned}
$$

Thus, $[T, \pi](\omega)=0$, and on $H^{\perp}\left[T, \Delta I_{H^{+}}\right]=0$.
Thus, on $U^{+},\left[T,\left(\Delta / H^{2}\right)^{-1}\right]$, and so altejether $[T, G]=0$ by

$$
\begin{aligned}
T G(w)-G T(w) & =T \cdot\left(\Delta l_{L^{+}}\right)^{-1} \circ \pi(w)-\left(\left.\Delta\right|_{H^{1}}\right)^{+} \circ \pi T(w) \\
& =\left(\left.\Delta\right|_{H^{+}}\right)^{-1} \circ \pi T(w)-T\left(\left.\Delta\right|_{H^{2}}\right)^{-1} \circ \pi(w) .
\end{aligned}
$$

Corollary: G commutes with $*, d, \delta, \Delta$.

Part IV: Consequences far Algebraic Topology
Theorem 1: Let M be cptcorrented Riem. mfd willet budry. Then ever $d R$-cohomology class has a unique harmonic operestative.
Poof: let $[\alpha] \in H_{d R}^{0}(\mu)$. By the Hodge Theorem we con wite

$$
\begin{aligned}
\alpha=\pi(\alpha)+\pi^{+}(\alpha) & =\Delta G(\alpha)+\pi^{1}(\alpha) \\
& =\delta_{J} G(\alpha)+\gamma \delta G G(\alpha)+\pi^{+}(\alpha) \\
& =\delta G(\partial \alpha)+\partial \delta G(\alpha)+\pi^{+}(\alpha) \\
& =\partial \delta G(\alpha)+\pi^{+}(\alpha)
\end{aligned}
$$

Thus, $\pi^{+}(\alpha) \in M$ has $\left[\pi^{+}(\alpha)\right]=[\alpha]$.
Now, supper $\alpha_{1}, \alpha_{2} \in H, \alpha_{1}=\alpha_{2}+\partial \beta$. Then sine $\Delta\left(\alpha_{1}-\alpha_{\nu}\right)=0$,

$$
\left\langle\partial \beta_{1} \alpha_{1}-\alpha_{2}\right\rangle=\left\langle\beta_{1} \delta\left(\alpha_{1}-\alpha_{2}\right)\right\rangle=\langle\beta, 0\rangle=0
$$

So $\alpha \beta$ and $\alpha_{1}-\alpha_{2}$ are orkogral. Since $\alpha \beta+\left(\alpha_{2}-\alpha_{1}\right)=0$, $\delta \beta=\alpha_{1}-\alpha_{2}=0$, and we hat uniqueness for the harmonic repreartaties in each class.

Corallay_ 2: ThedR-colinolgy grope of a cit orientable smooth witt without broody are all food.

Theorem 3: (Poincoré Duality) M as above. Define a bilinear function

$$
\begin{aligned}
H_{\partial R}^{k} \times H_{d R}^{n-k} & \rightarrow \mathbb{R} \\
\text { by } \quad([\omega],[\eta]) & \longmapsto \int_{n} \omega \wedge \eta .
\end{aligned}
$$

Then (,--) is well defined, nondegenercte, and this determines isomorphisms

$$
H_{\| R}^{n-k}(M) \approx\left(H_{\Omega R}^{k}(M)\right)^{*} .
$$

Prof: To see tue ($-1,-$) is well defined, suppose that $\left[\omega_{1}\right]=\left[\omega_{2}\right],\left[n_{1}\right]=\left[n_{2}\right]$,

$$
\begin{aligned}
\left(\left[\omega_{1}\right],\left[n_{1}\right]\right)=\int \omega_{1} \wedge \eta_{1} & =\int\left(\omega_{2}+d \alpha\right) \wedge\left(n_{2}+d \beta\right) \\
& =\left(\left[\omega_{2}\right],\left(\eta_{2}\right]\right)+\int \partial \alpha \wedge \eta_{2}+\omega_{2} \wedge \delta \beta+\partial \alpha \wedge \partial \beta \\
& =\left(\left[\omega_{2}\right],\left[n_{2}\right)\right)+\int \partial\left(\alpha \wedge n_{2}\right)+\partial\left(\omega_{2} \wedge \beta\right)+\partial(\alpha \wedge \partial \beta) \\
& =\left(\left[\omega_{2}\right],\left[n_{2}\right]\right)
\end{aligned}
$$

Now suppose tut $[\omega] \in H_{J R}^{k} \backslash\{0\}$. We seek a $[\eta] \in H_{d R}^{n-k}$ so that $([\omega],[n]) \neq 0$. Fix all Diem. structure on M, ans assume whIG tad $\omega \in H^{n}$. Ten $[x, \Delta]=0$ implies the $\alpha \omega \in \mathcal{H}^{n-k}$ hence $* \omega$ is closed, and so $[x \omega] \in \mathcal{M}_{\sim}^{n-k} \backslash\{\cup\}$. This allows us to concise that $(-,-)$ is hondegenate, sine

$$
([\omega],[* \omega])=\int \omega \wedge * \omega=\int|\omega|^{2} \neq 0 .
$$

Therefore, $(-,-)$ determines an isomophism between $H_{\partial R}^{n-h}$ auD $\left(M_{\Delta R}^{k}\right)^{*}$. Explicitly, refine $T: H_{j R}^{n-k} \rightarrow\left(H_{j R}^{k}\right)^{x}$ by

$$
T([\eta])=(-,[\eta]) .
$$

Cleats T is lines, and it is infective by non-tegeneacy:

$$
0=T\left(\left[\eta_{1}\right]-\left[\eta_{2}\right]\right)=\left(-,\left[n_{1}\right]-\left[\eta_{2}\right]\right) \rightarrow\left[\eta_{1}\right]=\left[n_{2}\right] .
$$

We cur also bethe a simile linear, infective map $S \cdot H_{R}^{h} \longrightarrow\left(H_{i R}^{n-h}\right)^{A}$, so we see that

$$
\partial_{m} H_{j R}^{n-k} \leq d_{m}\left(H_{j R}^{k}\right)^{*}=d_{m} H_{\Delta R}^{k} \leq \partial_{m}\left(H_{j R}^{n-k}\right)^{\infty}=\partial_{m} H_{J R}^{n-k}
$$

$\rightarrow \operatorname{dim} H_{\mathbb{R}}^{n-k}=\operatorname{dm}\left(H_{d R}^{k}\right)^{*}$, hence T is an isomorphism.

Corallay_ 1: M^{n} as above \oplus connected. Tu. $H_{0 R}^{n}(M) \approx \mathbb{R}$.
Rematch regarding singular (co)homology:
Theorem Si (de Rham) Fur M a smooth mfd,

$$
\left(H_{\partial R}^{p} \simeq H_{\Delta^{\infty}}^{p} \simeq H_{\Delta}^{p}\right) \simeq\left(H_{p}^{*} \simeq\left(H_{p}^{\infty}\right)^{*}\right)
$$

Patty this togetw with The wee 3 we get

Theorem 6: (Poncoú Duality for Singular cohomdogy)

$$
H_{\Delta}^{k} \simeq H_{d R}^{n}=\left(H_{d R}^{n-k}\right)^{*} \simeq H_{n-h}
$$

A Prod Stets of th Hollie Theorem:
Pat I: Solving the PDE $\Delta \omega=\alpha$.
We will proceed by stadyis the weak for of the equation, and then pine regularity.

To motivate this, suppose that a is a smooth sola of $\Delta \omega=\alpha$. Let $\eta \in E^{P}(M)$, an consider

$$
\langle\alpha, \eta\rangle=\langle\Delta \omega, \eta\rangle=\langle\omega, \Delta \eta\rangle
$$

We syr the a liner function $\mathbb{E}: E^{P}(M) \rightarrow \mathbb{R}$ is a weak solution of $\Delta \omega=\alpha$ provided

$$
l(\eta)=\langle\alpha, n\rangle \quad \forall n \in E P(n) .
$$

Indeed, a classical soln w is a weak soln, by the Rest Representation: $l:=\left\langle\omega_{0} \rightarrow\right\rangle$:

$$
l(\Delta \eta)=\langle\omega, \Delta n\rangle=\langle\Delta \omega, \eta\rangle=\langle\alpha, \eta\rangle
$$

Theorem: Let $\alpha \in E^{P}(M)$, and $l \in(E)^{*}$ a weak solution of $\Delta \omega=\alpha$.
Then $\exists \omega \in E^{P}(M)$ st. $\ell(\eta)=\langle\omega, \eta\rangle \quad \forall \eta \in E^{P}(M)$. This, $\langle\Delta \omega, n\rangle=\langle\omega, \Delta \eta\rangle=e(\Delta n)=\langle\alpha, \eta\rangle \rightarrow \Delta \omega=\alpha$.

Thus, we seek a weak soln to $\Delta \omega=\alpha$, relying on the above blackboxed result to provide regularity. Actually, weill black box one more to help along the way:
Theorem 8 : Let $\left\{\alpha_{i}\right\} \subset E^{p}(M)$ with $\left|\alpha_{i}\right|+\left|\Delta \alpha_{i}\right| \leq c<\infty$. Then α_{i} has a Carly subsequence.

Let's see how these results help prone the Hodge Theorem.
Finite Dimensionality of $H^{P}=\operatorname{ker} \Delta$:
If H^{p} were s-dim' ℓ, then we could find an infinite seq. of $O N \alpha_{i}$, violating Theorem 8.
Let then $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be an on basis of H^{P}.
$E^{P}(M) \approx \Delta\left(E^{P}\right) \oplus H^{P}$: For any $\alpha \in E^{p}$, write $\alpha=\beta+\sum\left\langle\alpha, \omega_{i}\right\rangle \omega_{i}$ where $\beta \in M^{+}$. It suffices, then, to show that $H^{+}=\Delta(E P)$.

Step 1: $A(E P) \subset H^{\perp}$
Sopose $\eta \in H, \omega \in E^{D}$. Then

$$
\langle\Delta \omega, \eta\rangle=\langle\omega, \Delta \eta\rangle=\langle\omega, 0\rangle=0
$$

so indeed $\Delta\left(E^{P}\right) \subset H^{+}$.
Step 2: $H^{\perp} \subset \Delta\left(E^{P}\right)$
Let $\alpha \in \mathcal{H}^{+}$, and def re $l: \Delta\left(E^{p}\right) \rightarrow \mathbb{R}$ by $l(\Delta \eta)=\langle\alpha, \eta\rangle$.
That is, we define l to be a "prato weak solution" of $\Delta \omega=\alpha$. we wed to eaters ℓ to $E P$ to invoke Theorem 7.

First note the l is well defied. If $\Delta n_{1}=\Delta \eta_{2}$, then $n_{1}-n_{2} \in H$, hence $\left\langle\alpha_{1} n_{1}-\eta_{2}\right\rangle=0$ as $\alpha \in H^{+}$.
l is alsobdJ on $\Delta(E P)$. To see this weill read:
Lemma: $\Delta: H^{\perp} \rightarrow E^{P}$ is b ld below: $\exists c>0$ st. $|\alpha| \leqslant c|\Delta \alpha|$.
Proof: S-ppoce otherwise tut $\exists\left\{\alpha_{k}\right\} \subset H^{2}$ st. $\left|\alpha_{k}\right|=1,\left|\Delta \alpha_{k}\right|<\frac{1}{n}$. WLOG $\left\{\alpha_{n}\right\}$ is Carly y Theorem 8 .
Define $\ell: E^{P} \rightarrow \mathbb{R}$ b, $\ell(\eta)=\lim \left\langle\alpha_{k}, \eta\right\rangle$, which exists by the above. l is bod (wit nom 1 in fact)
and

$$
l(\Delta \eta)=\lim \left\langle\alpha_{k}, \Delta \eta\right\rangle=\lim \left\langle\Delta \alpha_{n}, \eta\right\rangle=0
$$

This, l is a weak soln of $\Delta \omega=0, \cdots d$ by Theorem 7 the is indeed sone $\omega \in E^{D}$ st. $\ell(n)=\langle\omega, n\rangle$.

Than, $\langle\omega, n\rangle=l(\eta)=\lim \left\langle\alpha_{n}, n\right\rangle \Rightarrow \alpha_{n} \rightarrow \omega \in H^{\perp}$ with $|\omega|=1, \Delta \omega=0 \longrightarrow$.

Now, let $\eta \in E^{P}, \operatorname{cnj}$ compote

$$
\begin{aligned}
|\ell(\Delta \eta)|=\left|\ell\left(\Delta\left(\pi^{\perp}(n)\right)\right)\right| & =\left|\left\langle\alpha_{1} \pi^{\perp}(\eta)\right\rangle\right| \leqslant|\alpha|\left|\pi^{+}(\eta)\right| \\
& \leq c|\alpha|\left|\Delta\left(\pi^{+}(n)\right)\right|=c|\alpha||\Delta n|
\end{aligned}
$$

By Mahy-Banach, we can extend e to $E P$, invoke Thearn 7, ard bobbin an $\omega \in E^{P}$ sit. $\Delta \omega=\alpha$, as desired.

Step 3: $\Delta\left(E^{P}\right) \approx \delta \partial(E P) \oplus \gamma \delta(E P)$

$$
\langle\delta \partial \alpha, \partial \delta \beta\rangle=\left\langle\partial \alpha, \partial^{2} \delta \beta\right\rangle=0 \rightarrow \delta \partial\left(E^{P}\right) \perp \partial \delta\left(E^{p}\right)
$$

